Plasticizer Di-(2-ethylhexyl) Phthalate and Its Metabolite Mono(2-ethylhexyl) Phthalate Inhibit Myogenesis in Differentiating Mouse and Human Skeletal Muscle Cell Models

Author:

Lan Kuo-Cheng,Weng Te-I,Chiang Wei-Che,Chiu Chen-YuanORCID,Chan Ding-Cheng,Yang Rong-SenORCID,Liu Shing-HwaORCID

Abstract

The relationship between plasticizer di(2-ethylhexyl) phthalate (DEHP) and low birth weight in neonates has been reported. Immature muscle differentiation may be involved in low birth weight. The myotoxic characteristics of chemicals have been observed in differentiating immortalized and primary muscle cells. Here, we explored the myotoxic effects of DEHP and its metabolite mono(2-ethylhexyl) phthalate (MEHP) in vitro using the immortalized mouse skeletal myoblasts C2C12 and primary human skeletal muscle progenitor cell (HSMPC) models. We found that both DEHP and MEHP at the concentrations of 10–100 μM, which were non- and low-cytotoxicity concentrations, significantly and dose-dependently inhibited the creatine kinase activity, myotube formation with multiple nuclei, and myogenin and myosin heavy chain (muscle differentiation markers) protein expression in C2C12 and HSMPCs under differentiation medium. Both DEHP and MEHP significantly decreased Akt phosphorylation in C2C12 and HSMPCs during differentiation. Taken together, DEHP and its metabolite MEHP are capable of inhibiting Akt-regulated myogenesis in myoblasts/myogenic progenitors during differentiation. These findings suggest the possibility of DEHP as an environmental risk factor affecting skeletal myogenic differentiation. Moreover, these in vitro muscle cell models may be a possible alternative method to animal myotoxicity testing.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3