Deep Learning Model for Selecting Suitable Requirements Elicitation Techniques

Author:

Dafaalla HatimORCID,Abaker MohammedORCID,Abdelmaboud Abdelzahir,Alghobiri Mohammed,Abdelmotlab Ahmed,Ahmad Nazir,Eldaw Hala,Hasabelrsoul Aiman

Abstract

Requirement elicitation represents one of the most vital phases in information system (IS) and software development projects. Selecting suitable elicitation techniques is critical for eliciting the correct specification in various projects. Recent studies have revealed that improper novice practices in this phase have increased the failure rate in both IS and software development projects. Previous research has primarily relied on creating procedural systems based on contextual studies of elicitation properties. In contrast, this paper introduces a deep learning model for selecting suitable requirement elicitation. An experiment was conducted wherein a collected dataset of 1684 technique selection attributes were investigate with respect to 14 elicitation techniques. The study adopted seven criteria to evaluate predictive model performance using confusion matrix accuracy, precision, recall, F1 Score, and area under the ROC curve (AUC) and loss curve. The model scored prediction accuracy of 82%, precision score of 0.83, recall score of 0.83, F1 score of 0.82, cross-validation score of 0.82 (± 0.10), One-vs-One ROC AUC score of 0.74, and One-vs-Rest ROC AUC score of 0.75 for each label. Our results indicate the model’s high prediction ability. The model provides a robust decision-making process for delivering correct elicitation techniques and lowering the risk of project failure. The implications of this study can be used to promote the automatization of the elicitation technique selection process, thereby enhancing current required elicitation industry practices.

Funder

The Deanship of Scientific Research at King Khalid University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3