Origin and Salinization Processes of Groundwater in the Semi-Arid Area of Zagora Graben, Southeast Morocco

Author:

Ait Lemkademe Anasse1ORCID,El Ghorfi Mustapha12,Zouhri Lahcen3ORCID,Heddoun Ouissal1,Khalil Abdessamad14ORCID,Maacha Lhou5

Affiliation:

1. Geology and Sustainable Mining Institute, Mohammed VI Polytechnic University, Benguerir 43150, Morocco

2. Lab Géoressources (L3G), Cadi Ayyad University, Marrakech 40000, Morocco

3. AGHYLE, Institut Polytechnique UniLaSalle Beauvais, 19 Rue Pierre Waguet, 60000 Beauvais, France

4. Resources Valorization, Environment and Sustainable Development Research Team (RVESD), Department of Mines, Mines School of Rabat, Ave Hadj Ahmed Cherkaoui, BP 753, Agdal, Rabat 10090, Morocco

5. Managem Group, Twin Center, Boulevard Zerktouni, Casablanca 20000, Morocco

Abstract

Located in the southeastern region of Morocco, the Zagora area mainly relies on groundwater as a source of water supply. However, this groundwater is often of concern, due to the limited recharge and unfavorable geological conditions for the development of the aquifer. Despite this, private wells in the Zagora ditch reveal relatively rich water resources. Geochemical and isotopic studies were conducted in the area to understand the origin of the groundwater and its salinity, aiding in informed water management strategies to assist in better planning and regulation of well construction, as well as in mitigating the impacts of high salinity on local water supply and agricultural systems. The results show that the water quality varies, with some wells having conductivity values in excess of 5 mS/cm. Most groundwater samples have high salinity and low pH due to the CO2 dissolved in groundwater. Geochemical analysis indicated two chemical facies: chloride–sulfate calcic/magnesic and bicarbonate calcic/magnesic. The presence of Na+ and Cl− indicated that the origin of these two elements in these waters was the dissolution of halite, with some samples showing an enrichment of Na+ compared to Cl−. This could be attributed to cation exchange. The concentration of Ca2+ and HCO3− suggested that their origin is the dissolution of calcite and the weathering of calcium silicate minerals such as plagioclase. The isotopic analysis showed that the δ18O values ranged from −10.98‰ to −8.54‰, and δ2H values ranged from −75.9‰ to −62.3‰. This indicated that the groundwater originated from the High Atlas with a recharge altitude between 2600 m and 2800 m. The groundwater flows into the graben through fissures and regional fault networks.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3