Microstructural Relationship between Olivine and Clinopyroxene in Ultramafic Rocks from the Red Hills Massif, Dun Mountain Ophiolite

Author:

Shao Yilun12ORCID,Negrini Marianne2,Liu Cai1,Gao Rui3

Affiliation:

1. College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China

2. Department of Geology, University of Otago, Dunedin 9054, New Zealand

3. School of Earth Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China

Abstract

The microstructural relationship between olivine and clinopyroxene is significant in recovering the mantle evolution under clinopyroxene-saturated melting conditions. This study focuses on olivine/clinopyroxene-related ultramafic rocks (dunite, wehrlite, olivine clinopyroxenite, and clinopyroxenite) in the Ells Stream Complex of the Red Hills Massif. (Olivine) clinopyroxenites have an A/D-type olivine crystallographic preferred orientation (CPO) whereas peridotites have various olivine CPO types. B-type olivine CPO was newly discovered, which may have been generated under hydrous conditions. The discovery of B-type CPO means that all six olivine CPO types could exist in a single research area. Clinopyroxene CPOs also vary and have weaker deformation characteristics (e.g., lower M index and weaker intracrystalline deformation) than olivine; thus, they probably melted and the clinopyroxene-rich ultramafic bands existed as melt veins. Irregular clinopyroxene shapes in the peridotites and incoherent olivine and clinopyroxene CPOs ([100]OL and [001]CPX are not parallel) also indicate a melted state. The dominant orthorhombic and LS-type CPOs in olivine and clinopyroxene imply that simple shear was the main deformation mechanism. Such complicated microstructural characteristics result from the overprinted simple shear under high temperatures (>1000 °C) and hydrous melting environments until the melt-frozen period. This case study is helpful to better understand the olivine and clinopyroxene relationship.

Funder

GNS

China Scholarship Council

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3