Multiscale Change Detection Domain Adaptation Model Based on Illumination–Reflection Decoupling

Author:

Fan Rongbo12ORCID,Xie Jialin3,Yang Jianhua12ORCID,Hong Zenglin12,Xu Yuqi4,Hou Hong5

Affiliation:

1. School of Automation, Northwestern Polytechnical University, Xi’an 710129, China

2. Shaanxi Provincial Innovation Center for Geology and Intelligent Remote Sensing Application, Xi’an 710129, China

3. School of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China

4. China Association for Science and Technology Service Center for Societies, Beijing 100038, China

5. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China

Abstract

In the change detection (CD) task, the substantial variation in feature distributions across different CD datasets significantly limits the reusability of supervised CD models. To alleviate this problem, we propose an illumination–reflection decoupled change detection multi-scale unsupervised domain adaptation model, referred to as IRD-CD-UDA. IRD-CD-UDA maintains its performance on the original dataset (source domain) and improves its performance on unlabeled datasets (target domain) through a novel CD-UDA structure and methodology. IRD-CD-UDA synergizes mid-level global feature marginal distribution domain alignment, classifier layer feature conditional distribution domain alignment, and an easy-to-hard sample selection strategy to increase the generalization performance of CD models on cross-domain datasets. Extensive experiments conducted on the LEVIR, SYSU, and GZ optical remote sensing image datasets demonstrate that the IRD-CD-UDA model effectively mitigates feature distribution discrepancies between source and target CD data, thereby achieving optimal recognition performance on unlabeled target domain datasets.

Funder

National Natural Science Foundation of China

Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University

Publisher

MDPI AG

Reference51 articles.

1. Shi, W., Zhang, M., Zhang, R., Chen, S., and Zhan, Z. (2020). Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges. Remote Sens., 12.

2. Global-aware siamese network for change detection on remote sensing images;Zhang;ISPRS J. Photogramm. Remote Sens.,2023

3. Double U-Net (W-Net): A change detection network with two heads for remote sensing imagery;Wang;Int. J. Appl. Earth Obs. Geoinf.,2023

4. MF-SRCDNet: Multi-feature fusion super-resolution building change detection framework for multi-sensor high-resolution remote sensing imagery;Li;Int. J. Appl. Earth Obs. Geoinf.,2023

5. Application of Hybrid-Pol SAR in Oil-Spill Detection;Kumar;IEEE Geosci. Remote Sens. Lett.,2023

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3