AFRNet: Anchor-Free Object Detection Using Roadside LiDAR in Urban Scenes

Author:

Wang Luyang12ORCID,Lan Jinhui12,Li Min12

Affiliation:

1. Department of Instrument Science and Technology, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Beijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

In urban settings, roadside infrastructure LiDAR is a ground-based remote sensing system that collects 3D sparse point clouds for the traffic object detection of vehicles, pedestrians, and cyclists. Current anchor-free algorithms for 3D point cloud object detection based on roadside infrastructure face challenges related to inadequate feature extraction, disregard for spatial information in large 3D scenes, and inaccurate object detection. In this study, we propose AFRNet, a two-stage anchor-free detection network, to address the aforementioned challenges. We propose a 3D feature extraction backbone based on the large sparse kernel convolution (LSKC) feature set abstraction module, and incorporate the CBAM attention mechanism to enhance the large scene feature extraction capability and the representation of the point cloud features, enabling the network to prioritize the object of interest. After completing the first stage of center-based prediction, we propose a refinement method based on attentional feature fusion, where fused features incorporating raw point cloud features, voxel features, BEV features, and key point features are used for the second stage of refinement to complete the detection of 3D objects. To evaluate the performance of our detection algorithms, we conducted experiments using roadside LiDAR data from the urban traffic dataset DAIR-V2X, based on the Beijing High-Level Automated Driving Demonstration Area. The experimental results show that AFRNet has an average of 5.27 percent higher detection accuracy than CenterPoint for traffic objects. Comparative tests further confirm that our method achieves high accuracy in roadside LiDAR object detection.

Funder

13th Five-Year Plan Funding of China

14th Five-Year Plan Funding of China

Fundamental Research Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3