Constitutive Analysis on High-Temperature Flow Behavior of 3Cr-1Si-1Ni Ultra-High Strength Steel for Modeling of Flow Stress

Author:

Lei Bingwang,Chen Gaoqiang,Liu Kehong,Wang Xin,Jiang Xiaomei,Pan Jiluan,Shi Qingyu

Abstract

High-temperature plastic flow is the underlying process that governs the product quality in many advanced metal manufacturing technologies, such as extrusion, rolling, and welding. Data and models on the high-temperature flow behavior are generally desired in the design of these manufacturing processes. In this paper, quantitative constitutive analysis is carried out on 3Cr-1Si-1Ni ultra-high strength steel, which sheds light on the mathematic relation between the flow stress and the thermal-mechanical state variables, such as temperature, plastic strain, and strain rate. Particularly, the hyperbolic-sine equation in combination with the Zener-Hollomon parameter is shown to be successful in representing the effect of temperature and strain rate on the flow stress of the 3Cr-1Si-1Ni steel. It is found that the flow stress of the 3Cr-1Si-1Ni steel is significantly influenced by strain. The strain-dependence on flow stress is not identical at different temperatures and strain rates. In the constitutive model, the influence of strain in the constitutive analysis is successfully implemented by introducing strain-dependent constants for the constitutive equations. Fifth-order polynomial equations are employed to fit the strain-dependence of the constitutive constant. The proposed constitutive equations which considers the compensation of strain is found to accurately predict flow stress of the 3Cr-1Si-1Ni steel at the temperatures ranging from 800 °C to 1250 °C, strain rate ranging from 0.01/s to 10/s, and strain ranging from 0.05 to 0.6.

Funder

National Natural Science Foundation of China

State Key Laboratory of Tribology

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3