Anthranilic Acid: A Versatile Monomer for the Design of Functional Conducting Polymer Composites

Author:

McCormick Rachel1,Buckley Emily1,Donnelly Paul J.1ORCID,Gilpin Victoria1,McMath Regan1,Smith Robert B.2ORCID,Papakonstantinou Pagona1ORCID,Davis James1ORCID

Affiliation:

1. School of Engineering, Ulster University, Belfast BT5 1ED, UK

2. Institute for Materials and Investigative Sciences, School of Engineering and Computing, University of Central Lancashire, Preston PR1 2HE, UK

Abstract

Polyaniline has been utilized in various applications, yet its widespread adoption has often been impeded by challenges. Composite systems have been proposed as a means of mitigating some of these limitations, and anthranilic acid (2-aminobenzoic acid) has emerged as a possible moderator for use in co-polymer systems. It offers improved solubility and retention of electroactivity in neutral and alkaline media, and, significantly, it can also bestow chemical functionality through its carboxylic acid substituent, which can greatly ease post-polymer modification. The benefits of using anthranilic acid (as a homopolymer or copolymer) have been demonstrated in applications including corrosion protection, memory devices, photovoltaics, and biosensors. Moreover, this polymer has been used as a versatile framework for the sequestration of metal ions for water treatment, and, critically, these same mechanisms serve as a facile route for the production of catalytic metallic nanoparticles. However, the widespread adoption of polyanthranilic acid has been limited, and the aim of the present narrative review is to revisit the early promise of anthranilic acid and assess its potential future use within modern smart materials. A critical evaluation of its properties is presented, and its versatility as both a monomer and a polymer across a spectrum of applications is highlighted.

Funder

Department for the Economy (DfE) Northern Ireland

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3