OFDM System Design for Measured Ultrasonic Underwater Channels

Author:

Cobacho-Ruiz PabloORCID,Cañete Francisco JavierORCID,Martos-Naya EduardoORCID,Fernández-Plazaola UnaiORCID

Abstract

In this paper, we present the development of a multicarrier modulation system of low complexity for broadband underwater acoustic communications (UAC), whose frequency band is located in the ultrasonic range, specifically between 32 kHz and 128 kHz. Underwater acoustic channels are recognized among the most hostile communication channels due to their strong time and frequency selectivity and, hence, the design of high-performance systems is a challenge that is difficult to resolve at the present time with state-of-art technology. The aim of the proposed system is to reach a reasonable bit rate, between 40 and 50 Kbps, over these channels that allows, for instance, the transmission of video signals of limited quality. We describe an orthogonal frequency division multiplexing (OFDM) modem prototype with a parameter setting and design specifically adapted to the channel nature. For this purpose, actual measurements carried out at the Mediterranean sea, on shallow waters, have been used to evaluate the system performance and to optimize the design. A discussion on several modulations and OFDM configurations is presented that leads to the selection of differential and non-differential quadri-phase shift keying (QPSK) as good candidates depending on synchronization capabilities.

Funder

Regional Government of Andalusia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3