New Insights into Ice Avalanche-Induced Debris Flows in Southeastern Tibet Using SAR Technology

Author:

Luo Siyuan,Xiong Junnan,Liu ShuangORCID,Hu KaihengORCID,Cheng WeimingORCID,Liu Jun,He Yufeng,Sun Huaizhang,Cui Xingjie,Wang Xin

Abstract

Drastic climate change has led to glacier retreat in southeastern Tibet, and the increased frequency and magnitude of heavy rainfall and intense snow melting have intensified the risk of ice avalanche-induced debris flows in this region. To prevent and mitigate such hazards, it is important to derive the pre-disaster evolutionary characteristics of glacial debris flows and understand their triggering mechanisms. However, ice avalanche-induced debris flows mostly occur in remote alpine mountainous areas that are hard for humans to reach, which makes it extremely difficult to conduct continuous ground surveys and optical remote sensing monitoring. To this end, synthetic aperture radar (SAR) images were used in this study to detect and analyze the pre-disaster deformation characteristics and spatial evolution in the Sedongpu Basin and to detect changes in the snowmelt in the basin in order to improve our understanding of the triggering mechanism of the ice avalanche-induced debris flows in this region. The results revealed that the maximum average deformation rate in the basin reached 57.3 mm/year during the monitoring period from January 2016 to October 2018. The deformation displacement in the gully where the ice avalanche source area was located was intimately correlated with the summer snowmelt and rainfall and was characterized by seasonal accumulation. Clear acceleration of the deformation was detected after both the most recent earthquake and the strong rainfall and snowmelt processes in the summer of 2018. This suggests that earthquakes, snowmelt, and rainfall were significant triggers of the Sedongpu ice avalanche-induced debris flows. The results of this study provide new insights into the genesis of the Sedongpu ice avalanche-induced debris flows, which could assist in disaster warning and prevention in alpine mountain regions.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3