Gravity Control-Based Data Augmentation Technique for Improving VR User Activity Recognition

Author:

Han Dong Heun,Lee Chul Woo,Kang Hyeong YeopORCID

Abstract

The neural-network-based human activity recognition (HAR) technique is being increasingly used for activity recognition in virtual reality (VR) users. The major issue of a such technique is the collection large-scale training datasets which are key for deriving a robust recognition model. However, collecting large-scale data is a costly and time-consuming process. Furthermore, increasing the number of activities to be classified will require a much larger number of training datasets. Since training the model with a sparse dataset can only provide limited features to recognition models, it can cause problems such as overfitting and suboptimal results. In this paper, we present a data augmentation technique named gravity control-based augmentation (GCDA) to alleviate the sparse data problem by generating new training data based on the existing data. The benefits of the symmetrical structure of the data are that it increased the number of data while preserving the properties of the data. The core concept of GCDA is two-fold: (1) decomposing the acceleration data obtained from the inertial measurement unit (IMU) into zero-gravity acceleration and gravitational acceleration, and augmenting them separately, and (2) exploiting gravity as a directional feature and controlling it to augment training datasets. Through the comparative evaluations, we validated that the application of GCDA to training datasets showed a larger improvement in classification accuracy (96.39%) compared to the typical data augmentation methods (92.29%) applied and those that did not apply the augmentation method (85.21%).

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference73 articles.

1. deepGesture: Deep learning-based gesture recognition scheme using motion sensors

2. A Deep Learning Method for Complex Human Activity Recognition Using Virtual Wearable Sensors;Xiao;arXiv,2020

3. Multi-scale convolutional neural networks for time series classification;Cui;arXiv,2016

4. Human Action Recognition in Videos Using Kinematic Features and Multiple Instance Learning

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3