Abstract
Excessive neutrophil influx and activation in lungs during infections, such as manifest during the ongoing SARS CoV-2 pandemic, have brought neutrophil extracellular traps (NETs) and the concomitant release of granule contents that damage surrounding tissues into sharp focus. Neutrophil proteases, which are known to participate in NET release, also enable the binding of the viral spike protein to cellular receptors and assist in the spread of infection. Blood and tissue fluids normally also contain liver-derived protease inhibitors that balance the activity of proteases. Interestingly, neutrophils themselves also express the protease inhibitor alpha-1-antitrypsin (AAT), the product of the SERPINA-1 gene, and store it in neutrophil cytoplasmic granules. The absence of AAT or mutations in the SERPINA-1 gene promotes lung remodeling and fibrosis in diseases such as chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome (ARDS) and increases the risk of allergic responses. Recent observations point to the fact that reduced activity of AAT presents a major susceptibility factor for severe COVID-19. Here, we focus attention on the mechanism of neutrophil elastase (NE) in NET release and its inhibition by AAT as an additional factor that may determine the severity of COVID-19.
Subject
Molecular Biology,Biochemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献