Measurement Method of Physical Parameters of Two-Phase Flow Based on Dual-Frequency Demodulation

Author:

Song Chunhui1,Yao Chengzhi1,Liu Qinghong1,Sun Wenyu1,Zhang Hui1ORCID

Affiliation:

1. Key Laboratory of Engineering Dielectrics and Its Applications, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China

Abstract

Oil-water two-phase flow commonly occurs in the process of crude oil electric dehydration. Here, through dynamic changes in the water content and conductivity of oil-water two-phase flow in the process of electric dehydration, the influence of water content and conductivity on the efficiency and stability of electric dehydration is analyzed. Using real-time in-line measurements of water content and conductivity, the electric dehydration system is kept in an optimal state, which provides a basis for realizing efficient oil-water separation. Measurements of the physical parameters of oil-water two-phase flow is affected by many factors, such as the temperature of the two-phase flow, composition of the two-phase flow medium, structure of the measurement sensor, coupling of the conventional resistance–capacitance excitation signal, and processing of the measurement data. This complexity causes, some shortcomings to the control system, such as a large measurement error, limited measurement range, inability to measure the medium water phase as a conductive water phase, etc., and not meeting the requirements of the electric dehydration process. To solve that the conductivity and water content of high-conductivity crude oil emulsions cannot be measured synchronously, the RC relationship of oil-water emulsions is measured synchronously using dual-frequency digital demodulation technology, which verifies the feasibility of our test method for the synchronous measurement of physical parameters of homogeneous oil-water two-phase flow. Experimental results show that the novel measuring method (which is within the target measuring range) can be used to measure water content 0~40% and conductivity 1 ms/m~100 ms/m. The measuring error of the water content is less than 2%, and the measuring error of the conductivity is less than 5%.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3