Optimization and Analysis of Multilayer Planar Spiral Coils for the Application of Magnetic Resonance Wireless Power Transfer to Wearable Devices

Author:

Park Young-JinORCID,Kim Ji-Eun,Na Kyung-Min,Yang Ki-Dong,Cho Kyung-Hwan

Abstract

In this study, small multilayer planar spiral coils were analyzed and optimized to wirelessly charge an in-ear wearable bio-signal monitoring device in a wine-glass-shaped transmitter (Tx) based on magnetic resonance wireless power transfer (MR-WPT). For analysis of these coils, a volume filament model (VFM) was used, and an equivalent circuit formulation for the VFM was proposed. The proposed method was applied to design effective multilayer coils with a diameter and height of 6 and 3.8 mm, respectively, in the wearable device. For the coils, a printed circuit board having a 0.6 mm thick dielectric substrate and a 2 oz thick copper metal was used. Moreover, the coils on each layer were connected in series. The dimensions of the double-, four-, and eight-layer coils were optimized for the maximum quality factor (Q-factor) and coupling efficiency. The operating frequency was 6.78 MHz. The optimal dimensions for the maximum Q-factor varied depending on the number of coil layers, pattern width, and turn number. For verification, the designed coils were fabricated and measured. For the four-layer coil, the coupling efficiency and Q-factor using the measured resistance and mutual inductance were 58.1% and 32.19, respectively. Calculations showed that the maximum Q-factor for the four-layer coil was 40.8 and the maximum coupling efficiency was 60.1%. The calculations and measurement were in good agreement. Finally, the entire system of the in-ear wearable bio-signal monitoring device, comprising a wine-glass-shaped transmitter, the designed receiving coil, and a monitoring circuit, was fabricated. The measured dc-dc efficiency of the MR-WPT system was 16.08%.

Funder

Korea Electrotechnology Research Institute

Korea Institute for Advancement of Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3