RGB-D Data-Based Action Recognition: A Review

Author:

Shaikh Muhammad BilalORCID,Chai DouglasORCID

Abstract

Classification of human actions is an ongoing research problem in computer vision. This review is aimed to scope current literature on data fusion and action recognition techniques and to identify gaps and future research direction. Success in producing cost-effective and portable vision-based sensors has dramatically increased the number and size of datasets. The increase in the number of action recognition datasets intersects with advances in deep learning architectures and computational support, both of which offer significant research opportunities. Naturally, each action-data modality—such as RGB, depth, skeleton, and infrared (IR)—has distinct characteristics; therefore, it is important to exploit the value of each modality for better action recognition. In this paper, we focus solely on data fusion and recognition techniques in the context of vision with an RGB-D perspective. We conclude by discussing research challenges, emerging trends, and possible future research directions.

Funder

Higher Education Commission, Pakistan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From CNNs to Transformers in Multimodal Human Action Recognition: A Survey;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-07-09

2. HAND MOVEMENT DISORDERS TRACKING BY SMARTPHONE BASED ON COMPUTER VISION METHODS;Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska;2024-06-30

3. Comparison Analysis of Multimodal Fusion for Dangerous Action Recognition in Railway Construction Sites;Electronics;2024-06-12

4. An Overview on Current Technologies for Assisted Living;2024 IEEE International Workshop on Metrology for Living Environment (MetroLivEnv);2024-06-12

5. A comprehensive review of navigation systems for visually impaired individuals;Heliyon;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3