Abstract
A Krasner hyperring (for short, a hyperring) is a generalization of a ring such that the addition is multivalued and the multiplication is as usual single valued and satisfies the usual ring properties. One of the important subjects in the theory of hyperrings is the study of polynomials over a hyperring. Recently, polynomials over hyperrings have been studied by Davvaz and Musavi, and they proved that polynomials over a hyperring constitute an additive-multiplicative hyperring that is a hyperstructure in which both addition and multiplication are multivalued and multiplication is distributive with respect to the addition. In this paper, we first show that the polynomials over a hyperring is not an additive-multiplicative hyperring, since the multiplication is not distributive with respect to addition; then, we study hyperideals of polynomials, such as prime and maximal hyperideals and prove that every principal hyperideal generated by an irreducible polynomial is maximal and Hilbert’s basis theorem holds for polynomials over a hyperring.
Funder
Ministry of Defence of the Czech Republic
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference38 articles.
1. Sur Une Generalization de Group;Marty,1934
2. Prolegomena of Hypergroup Theory;Corsini,1994
3. Applications of Hyperstructure Theory;Corsini,2003
4. On categories of hypergroups and hypermodules
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献