Abstract
Suppose that G is a simple undirected connected graph. Denote by D ( G ) the distance matrix of G and by T r ( G ) the diagonal matrix of the vertex transmissions in G, and let α ∈ [ 0 , 1 ] . The generalized distance matrix D α ( G ) is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 . If ∂ 1 ≥ ∂ 2 ≥ … ≥ ∂ n are the eigenvalues of D α ( G ) ; we define the generalized distance Estrada index of the graph G as D α E ( G ) = ∑ i = 1 n e ∂ i − 2 α W ( G ) n , where W ( G ) denotes for the Wiener index of G. It is clear from the definition that D 0 E ( G ) = D E E ( G ) and 2 D 1 2 E ( G ) = D Q E E ( G ) , where D E E ( G ) denotes the distance Estrada index of G and D Q E E ( G ) denotes the distance signless Laplacian Estrada index of G. This shows that the concept of generalized distance Estrada index of a graph G merges the theories of distance Estrada index and the distance signless Laplacian Estrada index. In this paper, we obtain some lower and upper bounds for the generalized distance Estrada index, in terms of various graph parameters associated with the structure of the graph G, and characterize the extremal graphs attaining these bounds. We also highlight relationship between the generalized distance Estrada index and the other graph-spectrum-based invariants, including generalized distance energy. Moreover, we have worked out some expressions for D α E ( G ) of some special classes of graphs.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献