Modified Mixed-Integer Linear Programming Formulation Implemented in Microsoft Excel to Synthesize a Heat Exchanger Network with Multiple Utilities to Compare Process Flowsheets

Author:

Revelo Maria F.1ORCID,Tuza Pablo V.2ORCID

Affiliation:

1. Unidad Educativa Rafael León Carvajal, Ministerio de Educación, Distrito Educativo Intercultural y Bilingüe 10D03 Cotacachi, Coordinación Zonal 1, Cotacachi 100306, Ecuador

2. Facultad de Ciencia e Ingeniería en Alimentos y Biotecnología, Universidad Técnica de Ambato, Ambato 180216, Ecuador

Abstract

In the present work, a modified mixed-integer linear programming model was implemented in Microsoft Excel® and minimized using the Solver tool to obtain information to devise a heat exchanger network with multiple utilities from a set of hot and cold streams and selected utilities by hand. Regarding the mixed-integer linear programming problem, the summation of utility energy was added to the model, and this energy was equal to that from the Temperature Interval method and the Grand Composite Curve. Moreover, feasible temperature ranges for heat exchange were considered according to the second law of thermodynamics. Also, the last two temperature intervals from the rank-ordered ones were assigned for water energy balances. An energy balance was introduced into the algorithm for each interval between its temperature and the process pinch temperature in the case of the boiler-feed water. Seven stream sets collected from the literature were used for the mixed-integer linear programming formulation testing, and six of them are presented in this article. Because of boiler-feed water generation and the low cost of utilities, the annualized cost of a heat exchanger network with multiple utilities can be lower than that of a network without multiple utilities.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3