Production of Chlorella vulgaris Biomass in Tubular Photobioreactors during Different Culture Conditions

Author:

Ratomski PatrykORCID,Hawrot-Paw MałgorzataORCID

Abstract

Biomass of microalgae and the components contained in their cells can be used for the production of heat, electricity, and biofuels. The aim of the presented study was to determine the optimal conditions that will be the most favorable for the production of large amounts of microalgae biomass intended for energy purposes. The study analyzed the effect of the type of lighting, the time of lighting culture, and the pH of the culture medium on the growth of Chlorella vulgaris biomass. The experiment was carried out in vertical tube photobioreactors in three photoperiods: 12/12, 18/6, and 24/0 h (light/dark). Two types of lighting were used in the work: high-pressure sodium light and light-emitting diode. The increase in biomass was determined by the gravimetric method, by the spectrophotometric method on the basis of chlorophyll a contained in the microalgae cells. The number of microalgae cells was also determined with the use of a hemocytometer. The optimal conditions for the production of biomass were recorded at a neutral pH, illuminating the cultures for 18 h a day. The obtained results were 546 ± 7.88 mg·L−1 dry weight under sodium lighting and 543 ± 1.92 mg·L−1 dry weight under light-emitting diode, with maximum biomass productivity of 27.08 ± 7.80 and 25.00 ± 5.1 mg·L−1∙d−1, respectively. The maximum content of chlorophyll a in cells was determined in the 12/12 h cycle and pH 6 (136 ± 14.13 mg∙m−3) under light-emitting diode and 18/6 h, pH 7 (135 ± 6.17 mg∙m−3) under sodium light, with maximum productivity of 26.34 ± 2.01 mg·m−3∙d−1 (light-emitting diode) and 24.21 ± 8.89 mg·m−3∙d−1 (sodium light). The largest number of microalgae cells (2.1 × 106) was obtained at pH 7 and photoperiod of 18/6 h under sodium light, and 12/12 h under light-emitting diode. Based on the results, it can be concluded that the determination of the optimal parameters for the growth and development of microalgae determines the production of their biomass, and such research should be carried out before starting the large-scale production process. In quantifying the biomass during cultivation, it is advantageous to use direct measurement methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3