Concept, Design, Initial Tests and Prototype of Customized Upper Limb Prosthesis

Author:

Radu (Frenț) Corina,Roșu Maria MagdalenaORCID,Matei Lucian,Ungureanu Liviu MarianORCID,Iliescu MihaielaORCID

Abstract

This paper presents aspects of the concept and design of prostheses for the upper limb. The objective of this research is that of prototyping a customized prosthesis, with EMG signals that initiate the motion. The prosthesis’ fingers’ motions (as well as that of its hand and forearm parts) are driven by micro-motors, and assisted by the individualized command and control system. The software and hardware tandem concept of this mechatronic system enables complex motion (in the horizontal and vertical plane) with accurate trajectory and different set rules (gripping pressure, object temperature, acceleration towards the object). One important idea is regarding customization via reverse engineering techniques. Due to this, the dimensions and appearance (geometric characteristics) of the prosthesis would look like the human hand itself. The trajectories and motions of the fingers, thumbs, and joints have been studied by kinematic analysis with the matrix–vector method aided by Matlab. The concept and design of the mechanical parts allow for complex finger motion—rotational motion in two planes. The command and control system is embedded, and data received from the sensors are processed by a micro-controller for managing micro-motor control. Preliminary testing of the sensors and micro-motors on a small platform, Arduino, was performed. Prototyping of the mechanical components has been a challenge because of the high accuracy needed for the geometric precision of the parts. Several techniques of rapid prototyping were considered, but only DLP (digital light processing) proved to be the right one.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3