Target Development towards First Production of High-Molar- Activity 44gSc and 47Sc by Mass Separation at CERN-MEDICIS

Author:

Mamis Edgars12ORCID,Duchemin Charlotte1ORCID,Berlin Valentina1ORCID,Bernerd Cyril1ORCID,Bovigny Mathieu1,Chevallay Eric1,Crepieux Bernard1,Gadelshin Vadim Maratovich3,Heinke Reinhard1ORCID,Hernandez Ronaldo Mendez14ORCID,Johnson Jake David15ORCID,Kalniņa Patrīcija12ORCID,Koliatos Alexandros1,Lambert Laura1ORCID,Rossel Ralf Erik1,Rothe Sebastian1,Thiboud Julien1,Weber Felix3ORCID,Wendt Klaus3,Zabolockis Rudolfs Jānis2ORCID,Pajuste Elīna2ORCID,Stora Thierry1ORCID

Affiliation:

1. European Organization for Nuclear Research (CERN), Esplanade des Particules 1, 1211 Geneva, Switzerland

2. Institute of Chemical Physics (ICP), University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia

3. Institut für Physik, Johannes Gutenberg Universität, Staudingerweg 7, 55128 Mainz, Germany

4. Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de La Habana (InSTEC-UH), Ave. Salvador Allende No. 1110 e, Infanta y Rancho Boyeros, Plaza de la Revolucion, La Habana 10400, Cuba

5. Department of Physics and Astronomy (IKS), Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3010 Heverlee, Belgium

Abstract

The radionuclides 43Sc,  44g/mSc, and 47Sc can be produced cost-effectively in sufficient yield for medical research and applications by irradiating  natTi and  natV target materials with protons. Maximizing the production yield of the therapeutic 47Sc in the highest cross section energy range of 24–70 MeV results in the co-production of long-lived, high-γ-ray-energy 46Sc and 48Sc contaminants if one does not use enriched target materials. Mass separation can be used to obtain high molar activity and isotopically pure Sc radionuclides from natural target materials; however, suitable operational conditions to obtain relevant activity released from irradiated  natTi and  natV have not yet been established at CERN-MEDICIS and ISOLDE. The objective of this work was to develop target units for the production, release, and purification of Sc radionuclides by mass separation as well as to investigate target materials for the mass separation that are compatible with high-yield Sc radionuclide production in the 9–70 MeV proton energy range. In this study, the in-target production yield obtained at MEDICIS with 1.4 GeV protons is compared with the production yield that can be reached with commercially available cyclotrons. The thick-target materials were irradiated at MEDICIS and comprised of metallic  natTi,  natV metallic foils, and  natTiC pellets. The produced radionuclides were subsequently released, ionized, and extracted from various target and ion source units and mass separated. Mono-atomic Sc laser and molecule ionization with forced-electron-beam-induced arc-discharge ion sources were investigated. Sc radionuclide production in thick  natTi and  natV targets at MEDICIS is equivalent to low- to medium-energy cyclotron-irradiated targets at medically relevant yields, furthermore benefiting from the mass separation possibility. A two-step laser resonance ionization scheme was used to obtain mono-atomic Sc ion beams. Sc radionuclide release from irradiated target units most effectively could be promoted by volatile scandium fluoride formation. Thus, isotopically pure  44g/mSc, 46Sc, and 47Sc were obtained as mono-atomic and molecular ScF 2+ ion beams and collected for the first time at CERN-MEDICIS. Among all the investigated target materials,  natTiC is the most suitable target material for Sc mass separation as molecular halide beams, due to high possible operating temperatures and sustained release.

Funder

Latvian Council of Science

European Union’s Horizon 2020

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3