Integrate Point-Cloud Segmentation with 3D LiDAR Scan-Matching for Mobile Robot Localization and Mapping

Author:

Li Xuyou,Du Shitong,Li Guangchun,Li Haoyu

Abstract

Localization and mapping are key requirements for autonomous mobile systems to perform navigation and interaction tasks. Iterative Closest Point (ICP) is widely applied for LiDAR scan-matching in the robotic community. In addition, the standard ICP algorithm only considers geometric information when iteratively searching for the nearest point. However, ICP individually cannot achieve accurate point-cloud registration performance in challenging environments such as dynamic environments and highways. Moreover, the computation of searching for the closest points is an expensive step in the ICP algorithm, which is limited to meet real-time requirements, especially when dealing with large-scale point-cloud data. In this paper, we propose a segment-based scan-matching framework for six degree-of-freedom pose estimation and mapping. The LiDAR generates a large number of ground points when scanning, but many of these points are useless and increase the burden of subsequent processing. To address this problem, we first apply an image-based ground-point extraction method to filter out noise and ground points. The point cloud after removing the ground points is then segmented into disjoint sets. After this step, a standard point-to-point ICP is applied into to calculate the six degree-of-freedom transformation between consecutive scans. Furthermore, once closed loops are detected in the environment, a 6D graph-optimization algorithm for global relaxation (6D simultaneous localization and mapping (SLAM)) is employed. Experiments based on publicly available KITTI datasets show that our method requires less runtime while at the same time achieves higher pose estimation accuracy compared with the standard ICP method and its variants.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3