Tight Integration of GNSS and Static Level for High Accuracy Dilapidated House Deformation Monitoring

Author:

Yang Jian,Tang WeimingORCID,Xuan WeiORCID,Xi Ruijie

Abstract

Global Navigation Satellite System (GNSS) can provide high-precision three-dimensional real-time or quasi-real-time changes of monitoring points automatically in house monitoring applications. However, due to the signal sheltering problem, large observation noise and multipath effects in urban observing environment with dense buildings, ambiguity resolution would be hard, and GNSS accuracy cannot always achieve millimeter level to satisfy the requirement of house monitoring. Static level is a precision instrument for measuring elevation difference and its variations, with a precision up to sub-millimeter level. It could be integrated with GNSS to improve the positioning accuracy in height direction. However, the existing integration of GNSS and static level is mostly on a respective results level. In this study, we proposed a method of integrating GNSS and static level observations tightly to enhance the GNSS positioning performance. The hardware design and integration mathematic model in data processing were introduced, and a group of experiments were carried out to verify the performance in positioning with and without the static level observation constraints. It found that the vertical monitoring measurement results of static level can achieve less than 1 mm. The GNSS ambiguity resolution performance can be improved by incorporating the measurement of static level into GNSS positioning equation as external constraints, and the precision of GNSS float solutions was significantly improved. Finally, the static level constraint can further improve the accuracy of the fixed solution from about 2 cm to better than 2 mm in vertical direction, which is even better than the accuracy in horizontal directions with about 3–6 mm with the static level constraint. The tight combination data processing algorithm can significantly improve the working efficiency, accuracy, and reliability of the application of dangerous house monitoring.

Funder

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference25 articles.

1. Old and Dilapidated Buildings Dynamic Monitoring and Its Safety Management;Gao;Constr. Technol.,2016

2. Research and Development of Intelligent Monitoring and Sensing System for Dangerous Houses;Wei;China Plant Eng.,2017

3. Calculation of Height Difference Based on GNSS Baseline in Topocentric Coordinate System for Perpendicular Line;Yang;Railw. Investig. Survey.,2016

4. Study on Methods of Monitoring Deformations of Offshore Oil Platform Based on GNSS and Static Leveling;Han;Master’s Thesis,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3