Abstract
We report an eye-safe aerosol and cloud lidar with an Erbium-doped fiber laser (EDFL) and a free-space intracavity upconversion detector as the transmitter and receiver, respectively. The EDFL was home-made, which could produce linearly-polarized pulses at a repetition rate of 15 kHz with pulse energies of ~70 μJ and pulse durations of ~7 ns centered at 1550 nm. The echo photons were upconverted to ~631 nm via the sum frequency generation process in a bow-tie cavity, where a Nd:YVO4 and a PPLN crystal served as the pump and nonlinear frequency conversion devices, respectively. The upconverted visible photons were recorded by a photomultiplier tube and their timestamps were registered by a customized time-to-digital converter for distance-resolved measurement. Reflected signals peaked at ~6.8 km from a hard target were measured with a distance resolution of 0.6 m for an integral duration of 10 s. Atmospheric backscattered signals, with a range of ~6 km, were also detectable for longer integral durations. The evolution of aerosols and clouds were recorded by this lidar in a preliminary experiment with a continuous measuring time of over 18 h. Clear boundary and fine structures of clouds were identified with a spatial resolution of 9.6 m during the measurement, showing its great potential for practical aerosol and cloud monitoring.
Funder
National Natural Science Foundation of China
Shanghai Municipal Science and Technology Major Project
Youth Innovation Promotion Association, Chinese Academy of Sciences
Shanghai Rising-Star Program
China Postdoctoral Science Foundation
Subject
General Earth and Planetary Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献