Potential Recovery Assessment of the Embodied Resources in Qatar’s Wastewater

Author:

Alsheyab Mohammad,Kusch-Brandt SigridORCID

Abstract

Due to the ever-growing demand for natural resources, wastewater is being considered an alternative source of water and potentially other resources. Using Qatar as an example, this study assesses the resources embodied in wastewater and paves the way to combine wastewater treatment with advanced resource recovery (water, energy, nitrogen, phosphorous, added value products) which can turn wastewater management from a major cost into a source of profit. In this sense, wastewater is no longer seen as a problem in need of a solution, rather it is part of the solution to challenges that societies are facing today. Based on estimated quantities of generated urban wastewater and its average composition, mass flow analysis is implemented to explore the maximum availability of major wastewater constituents (solids, organic compounds, nutrients, chloride, alkalinity, sulfide). An assessment analysis reveals that, in Qatar, more than 290,000 metric tons total solids, 77,000 metric tons organic compounds, 6000 metric tons nitrogen, 81,000 metric tons chloride, 2800 metric tons sulfide, and 880 metric tons of phosphorus are embedded in about 176 million m3 of urban wastewater annually. One promising valorization strategy is the implementation of anaerobic digestion with biogas production, and the organic materials contained in Qatar’s wastewater corresponds to more than 27 million m3 of methane (equivalent to an energy content of more than 270 GWh) per year. The results further suggest that the recovery of nitrogen, phosphorus, and sulfide should be given priority.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference61 articles.

1. Wastewater Engineering: Treatment and Resource Recovery,2013

2. Quality Assessment of Water and Wastewater;Tomar,1999

3. Chemistry of wastewater;Ellis,2009

4. At-source domestic wastewater quality

5. Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture,2007

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3