Climate-Related Sea Level Rise and Coastal Wastewater Treatment Infrastructure Futures: Landscape Planning Scenarios for Negotiating Risks and Opportunities in Australian Urban Areas

Author:

Zhou Kaihang1ORCID,Hawken Scott2ORCID

Affiliation:

1. Aspect Studios Adelaide, Adelaide 5000, Australia

2. School of Architecture and Civil Engineering, University of Adelaide, Adelaide 5005, Australia

Abstract

Around the world, human populations and their supporting infrastructures are concentrated in coastal areas. With rising sea levels, these settlements and urban infrastructures are at risk of service interruptions, lasting damage and frequent climate-related hazards. Wastewater systems are especially vulnerable due to their proximity to coastlines. Despite the seriousness of sea-level-rise-induced challenges, a clear understanding of the risks and potential adaptations of coastal wastewater treatment systems and their associated landscapes in Australia has been overlooked. Further, there is a lack of urgency and awareness concerning this issue. In this study, we consider how scenario-based landscape design approaches might enhance current debates and approaches related to coastal change with particular reference to wastewater treatment systems and associated environmental landscapes. Adelaide is used as a case study, and a range of landscape planning exploratory scenarios are developed and evaluated to assess the possible consequences of different courses of action in uncertain contexts. We find that whilst wastewater treatment plants are threatened by climate-related hazards, there is an opportunity for landscape-scale environmental planning to manage risks and opportunities and improve ecological and economic outcomes. We also find that for wicked multidimensional problems, such as sea level rise, landscape scenario design testing can assist in identifying a number of creative adaptation approaches that are not immediately apparent. We find that approaches such as retreat, defense and accommodation are not mutually exclusive but can each share elements and strategies. The strategic potential of a more creative, scenario-based approach can therefore form a productive part of the sea level rise adaptation of coastal infrastructure landscapes in Australia and elsewhere.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference98 articles.

1. Sea Level Rise and Its Impact on Coastal Zones;Nicholls;Science,2010

2. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M.I. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

3. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M.I. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

4. Twenty-First Century Sea-Level Rise Could Exceed IPCC Projections for Strong-Warming Futures;Siegert;One Earth,2020

5. Church, J.A., Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., and Bex, V. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3