Demand Response as a Real-Time, Physical Hedge for Retail Electricity Providers: The Electric Reliability Council of Texas Market Case Study

Author:

Blohm AndrewORCID,Crawford JadenORCID,Gabriel Steven A.ORCID

Abstract

Residential demand response (DR) programs are generally administered through an electricity distribution utility, or an electric grid operator. These programs typically reduce electricity consumption by inducing behavioral changes in the occupants of participating households. We propose implementing a wholesale-price-sensitive residential DR program through the retail electricity provider (REP), who has more naturally aligned incentives to avoid high wholesale electricity prices and maintain customer satisfaction, as compared to distribution utilities, grid operators, and the average residential consumer. Retail electricity providers who serve residential consumers are exposed to substantial price risk as they generally have a portion of their portfolio exposed to variable real-time wholesale electricity prices, despite charging their residential customers a fixed retail electricity price. Using Monte Carlo simulations, we demonstrate that demand response, executed through internet-connected thermostats, to shift real-time residential HVAC load in response to real-time prices, can be used as an effective physical hedge, which is both less costly and more effective than relying solely on financial hedging mechanisms. We find that on average a REP can avoid USD 62.07 annually per household using a load-shifting program. Given that REPs operate in a low margin industry, an annual avoided cost of this magnitude is not trivial.

Funder

Maryland Industrial Partnerships

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3