Abstract
This paper tackles the problem of forecasting real-life crime. However, the recollected data only produced thirty-five short-sized crime time series for three urban areas. We present a comparative analysis of four simple and four machine-learning-based ensemble forecasting methods. Additionally, we propose five forecasting techniques that manage the seasonal component of the time series. Furthermore, we used the symmetric mean average percentage error and a Friedman test to compare the performance of the forecasting methods and proposed techniques. The results showed that simple moving average with seasonal removal techniques produce the best performance for these series. It is important to highlight that a high percentage of the time series has no auto-correlation and a high level of symmetry, which is deemed as white noise and, therefore, difficult to forecast.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献