Short Time Series Forecasting: Recommended Methods and Techniques

Author:

Cruz-Nájera Mariel AbigailORCID,Treviño-Berrones Mayra GuadalupeORCID,Ponce-Flores Mirna PatriciaORCID,Terán-Villanueva Jesús DavidORCID,Castán-Rocha José AntonioORCID,Ibarra-Martínez SalvadorORCID,Santiago AlejandroORCID,Laria-Menchaca JulioORCID

Abstract

This paper tackles the problem of forecasting real-life crime. However, the recollected data only produced thirty-five short-sized crime time series for three urban areas. We present a comparative analysis of four simple and four machine-learning-based ensemble forecasting methods. Additionally, we propose five forecasting techniques that manage the seasonal component of the time series. Furthermore, we used the symmetric mean average percentage error and a Friedman test to compare the performance of the forecasting methods and proposed techniques. The results showed that simple moving average with seasonal removal techniques produce the best performance for these series. It is important to highlight that a high percentage of the time series has no auto-correlation and a high level of symmetry, which is deemed as white noise and, therefore, difficult to forecast.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference28 articles.

1. Inseguridad subjetiva y representaciones sociales de la delincuencia

2. Confianza, victimización y desorden en la percepción de inseguridad en una población mexicana Trust, victimization and disorder in a Mexican population’s perception of insecurity Resumen;Livier;Psicumex,2019

3. Encuesta Nacional De Victimización Y Percepción Sobre Seguridad Pública (Envipe) 2020;Envipe;Inst. Nac. Estadística Geogr.,2020

4. El miedo de las víctimas: Diseccionando la Criminología del Control;Santos;Utopía Prax. Latinoam.,2019

5. Calidad del gobierno, victimización delictiva y participación política particularista en América Latina

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3