Abstract
We consider a function g(r,x,u) with x,u∈ℂ and r∈ℕ, which, over a symmetric domain, equals the sum of an infinite series as noted in the 16th Entry of Chapter 3 in Ramanujan’s second notebook. The function attracted new attention since it was established to be closely connected to the theory of labelled trees. However, to the best of our knowledge, a closed-form solution allowing, e.g., the rapid computation of g(r,x,u) in Mathematica without explicit use of recursions has been lacking until now. Our proposed formula transforms the part depending on the variable u into a more symmetric form, which then appears inside a finite triple sum consisting of binomials and Stirling numbers of the second kind.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献