Abstract
The gypsy moth, Lymantria dispar, a prominent polyphagous species native to Eurasia, causes severe impacts in deciduous forests during irregular periodical outbreaks. This study aimed to describe the genetic structure and diversity among European gypsy moth populations. Analysis of about 500 individuals using a partial region of the mitochondrial COI gene, L. dispar was characterized by low genetic diversity, limited population structure, and strong evidence that all extant haplogroups arose via a single Holocene population expansion event. Overall 60 haplotypes connected to a single parsimony network were detected and genetic diversity was highest for the coastal populations Croatia, Italy, and France, while lowest in continental populations. Phylogenetic reconstruction resulted in three groups that were geographically located in Central Europe, Dinaric Alps, and the Balkan Peninsula. In addition to recent events, the genetic structure reflects strong gene flow and the ability of gypsy moth to feed on about 400 deciduous and conifer species. Distinct genetic groups were detected in populations from Georgia. This remote population exhibited haplotypes intermediate to the European L. dispar dispar, Asian L. dispar asiatica, and L. dispar japonica clusters, highlighting this area as a possible hybridization zone of this species for future studies applying genomic approaches.
Funder
Austrian Science Fund
Croatian Science Foundation
Reference58 articles.
1. The taxonomy of the genus Lymantria Hübner, [1819] (Lepidoptera: Lymantriidae);Schintlmeister;Quadrifina,2004
2. Learning from the Legacy of Leopold Trouvelot
3. History and Impact of Gypsy Moth in North America and Comparison to Recent Outbreaks in Europe;McManus;Acta Silv. Lignaria Hung.,2007
4. Gypsy moth (
Lepidoptera: Lymantriidae
) in Central Asia
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献