Experimental Evaluation of Conservation Agriculture with Drip Irrigation for Water Productivity in Sub-Saharan Africa

Author:

Assefa Tewodros,Jha Manoj,Reyes Manuel,Tilahun Seifu,Worqlul Abeyou

Abstract

A field-scale experimental study was conducted in Sub-Saharan Africa (Ethiopia and Ghana) to examine the effects of conservation agriculture (CA) with drip irrigation system on water productivity in vegetable home gardens. CA here refers to minimum soil disturbance (no-till), year-round organic mulch cover, and diverse cropping in the rotation. A total of 28 farmers (13 farmers in Ethiopia and 15 farmers in Ghana) participated in this experiment. The experimental setup was a paired ‘t’ design on a 100 m2 plot; where half of the plot was assigned to CA and the other half to conventional tillage (CT), both under drip irrigation system. Irrigation water use and crop yield were monitored for three seasons in Ethiopia and one season in Ghana for vegetable production including garlic, onion, cabbage, tomato, and sweet potato. Irrigation water use was substantially lower under CA, 18% to 45.6%, with a substantial increase in crop yields, 9% to about two-fold, when compared with CT practice for the various vegetables. Crop yields and irrigation water uses were combined into one metric, water productivity, for the statistical analysis on the effect of CA with drip irrigation system. One-tailed paired ‘t’ test statistical analysis was used to examine if the mean water productivity in CA is higher than that of CT. Water productivity was found to be significantly improved (α = 0.05) under the CA practice; 100%, 120%, 222%, 33%, and 49% for garlic, onion, tomato, cabbage, and sweet potato respectively. This could be due to the improvement of soil quality and structure due to CA practice, adding nutrients to the soil and sticking soil particles together (increase soil aggregates). Irrigation water productivity for tomato under CA (5.17 kg m−3 in CA as compared to 1.61 kg m−3 in CT) is found to be highest when compared to water productivity for the other vegetables. The mulch cover provided protection for the tomatoes from direct contact with the soil and minimized the chances of soil-borne diseases. Adapting to CA practices with drip irrigation in vegetable home gardens is, therefore, a feasible strategy to improve water use efficiency, and to intensify crop yield, which directly contributes towards the sustainability of livelihoods of smallholder farmers in the region.

Funder

United States Agency for International Development

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference68 articles.

1. Agriculture at a Crossroads

2. Leaping and Learning: Linking Smallholders to Markets in Africa;Wiggins,2013

3. Resource degradation, low agricultural productivity, and poverty in sub‐Saharan Africa: pathways out of the spiral

4. Experimental and Modeling Evaluation of Conservation Agriculture with Drip Irrigation for Small-Scale Agriculture in Sub-Saharan Africa;Assefa,2018

5. Chapter Ten Climate Change Impacts on African Agriculture;Adare,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3