Fire Extinguishing Performance of Chemically Bonded Struvite Ceramic Powder with High Heat-Absorbing and Flame Retardant Properties

Author:

Liang Zilong,Zhou Zhiji,Sun Yunqi,Huang Yujia,Guo Xinya,Cai Guoshuai,Wang MingchaoORCID,Zhang Haijun

Abstract

Struvite is a chemically bonded ceramic product in the pipeline of a sewage treatment plant. In order to explore the fire extinguishing potential of struvite, a new type of struvite ultrafine dry powder with excellent performance was prepared by a simple process, and its fire extinguishing performance and mechanism were analyzed in depth. Under the same process conditions, the refinement degree (D50 = 5.132 μm) and the specific surface area (BET = 25.72 m2/g) of ultrafine struvite were larger than those of NH4H2PO4 (D50 = 8.961 μm, BET = 13.64 m2/g), making struvite more suitable for fire extinguishing. Besides, the pyrolysis process of struvite was relatively concentrated and absorbed more heat in a short time. Its heat absorption (458.4 J/mg) was higher than that of NH4H2PO4 (156.4 J/mg). Water, ammonia, and PO· were released during the pyrolysis of struvite, which effectively reduced fire temperature, diluted oxygen concentrations and captured free radicals. At the same time, the final products were magnesium orthophosphate and magnesium pyrophosphate, which formed a dense flame-retardant ceramic layer with good thermal insulation and environmental protection functions. In these cases, the fire extinguishing mechanism of struvite was determined to have three stages: the cooling effect, the asphyxiation effect, and the chemical effect. Correspondingly, the fire extinguishing time of struvite was three seconds faster than that of ammonium phosphate under 0.2 MPa based on the local oil basin test.

Funder

Scientific Research Project of Tianjin municipal Education Commission

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3