Effect of Sintering Temperatures on Grain Coarsening Behaviors and Mechanical Properties of W-NiTi Heavy Tungsten Alloys

Author:

Shao YangORCID,Yu Weikang,Wu Jifei,Ma Haiwen

Abstract

W-NiTi tungsten heavy alloys were prepared by an infiltration process using submicron W powders, and the effect of sintering temperatures on grain-coarsening behaviors and the mechanical properties of W-NiTi tungsten heavy alloys were investigated. The microstructures and mechanical properties were investigated using scanning electron microscopy, X-ray diffraction and compression tests. The results showed that tungsten particles were uniformly distributed in the NiTi binder. The W-NiTi tungsten heavy alloys consisted of B19′-NiTi and body-centered cubic W phases. The average tungsten particle sizes of W-NiTi tungsten heavy alloys sintered at 1400 °C, 1480 °C and 1560 °C were 2.62 μm, 4.04 μm and 5.20 μm, respectively. The average tungsten particle size increased with sintering temperatures, while the densities decreased at higher temperatures. The cavities retained in the W-NiTi tungsten heavy alloy sintered at 1560 °C, which degraded the mechanical properties. The calculated grain growth activation energy of W particles in the NiTi binder was 330 kJ/mol, which was higher than those in conventional W-NiFe and W-NiCo tungsten heavy alloys. The higher activation energy means more difficult diffusion process of W atoms in NiTi binders during sintering. Therefore, finer-grained heavy tungsten alloys were more easily obtained by using NiTi binders. Yield strength of W-NiTi tungsten heavy alloys decreased with increasing sintering temperatures due to coarsened tungsten particles.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3