Phylogeography as a Proxy for Population Connectivity for Spatial Modeling of Foot-and-Mouth Disease Outbreaks in Vietnam

Author:

Gunasekara Umanga1,Bertram Miranda R.2ORCID,Van Long Nguyen3,Minh Phan Quang3,Chuong Vo Dinh3,Perez Andres1,Arzt Jonathan2ORCID,VanderWaal Kimberly1ORCID

Affiliation:

1. Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA

2. Foreign Animal Disease Research Unit, USDA-ARS, Plum Island Animal Disease Center, Southold, NY 11957, USA

3. Department of Animal Health, Ministry of Agriculture and Rural Development, Hanoi, Vietnam

Abstract

Bayesian space–time regression models are helpful tools to describe and predict the distribution of infectious disease outbreaks and to delineate high-risk areas for disease control. In these models, structured and unstructured spatial and temporal effects account for various forms of non-independence amongst case counts across spatial units. Structured spatial effects capture correlations in case counts amongst neighboring provinces arising from shared risk factors or population connectivity. For highly mobile populations, spatial adjacency is an imperfect measure of connectivity due to long-distance movement, but we often lack data on host movements. Phylogeographic models inferring routes of viral dissemination across a region could serve as a proxy for patterns of population connectivity. The objective of this study was to investigate whether the effects of population connectivity in space–time regressions of case counts were better captured by spatial adjacency or by inferences from phylogeographic analyses. To compare these two approaches, we used foot-and-mouth disease virus (FMDV) outbreak data from across Vietnam as an example. We identified that accounting for virus movement through phylogeographic analysis serves as a better proxy for population connectivity than spatial adjacency in spatial–temporal risk models. This approach may contribute to design surveillance activities in countries lacking movement data.

Funder

United States Department of Agriculture

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3