Microstructure, Mechanical Properties and Oxidation Resistance of Nb-Si Based Ultrahigh-Temperature Alloys Prepared by Hot Press Sintering

Author:

Zhang Lijing1,Guan Ping2,Guo Xiping1ORCID

Affiliation:

1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China

2. School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China

Abstract

Nb-Si based ultrahigh-temperature alloys with the composition of Nb-22Ti-15Si-5Cr-3Al (atomic percentage, at. %) were prepared by hot press sintering (HPS) at 1250, 1350, 1400, 1450 and 1500 °C. The effects of HPS temperatures on the microstructure, room temperature fracture toughness, hardness and isothermal oxidation behavior of the alloys were investigated. The results showed that the microstructures of the alloys prepared by HPS at different temperatures were composed of Nbss, βTiss and γ(Nb,X)5Si3 phases. When the HPS temperature was 1450 °C, the microstructure was fine and nearly equiaxed. When the HPS temperature was lower than 1450 °C, the supersaturated Nbss with insufficient diffusion reaction still existed. When the HPS temperature exceeded 1450 °C, the microstructure coarsened obviously. Both the room temperature fracture toughness and Vickers hardness of the alloys prepared by HPS at 1450 °C were the highest. The alloy prepared by HPS at 1450 °C exhibited the lowest mass gain upon oxidation at 1250 °C for 20 h. The oxide film was mainly composed of Nb2O5, TiNb2O7, TiO2 and a small amount of amorphous silicate. The formation mechanism of oxide film is concluded as follows: TiO2 forms by the preferential reaction of βTiss and O in the alloy; after that, a stable oxide film composed of TiO2 and Nb2O5 forms; then, TiNb2O7 is formed by the reaction of TiO2 and Nb2O5.

Funder

National Natural Science Foundation of China

Research Fund of the State Key Laboratory of Solidification Processing (NWPU), China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3