High Performance of Titanium Dioxide Reinforced Acrylonitrile Butadiene Rubber Composites

Author:

Chueangchayaphan Wannarat,Luangchuang Piyawadee,Chueangchayaphan NarongORCID

Abstract

Recently, dielectric elastomer actuators (DEA) have emerged as one of the most promising materials for use in soft robots. However, DEA needs a high operating voltage and high mechanical properties. By increasing the dielectric constant of elastomeric materials, it is possible to decrease the operating voltage required. Thus, elastomeric composites with a high dielectric constant and strong mechanical properties are of interest. The aim of this research was to investigate the effect of titanium dioxide (TiO2) content ranging from 0 to 110 phr on the cure characteristics, and physical, dielectric, dynamic mechanical, and morphological properties of acrylonitrile butadiene rubber (NBR) composites. The addition of TiO2 reduced the scorch time (ts1) as well as the optimum cure time (tc90) but increased the cure rate index (CRI), minimum torque (ML), maximum torque (MH), and delta torque (MH − ML). The optimal TiO2 content for maximum tensile strength and elongation at break was 90 phr. Tensile strength and elongation at break were increased by 144.8% and 40.1%, respectively, over pure NBR. A significant mechanical property improvement was observed for TiO2-filled composites due to the good dispersion of TiO2 in the NBR matrix, which was confirmed by scanning electron microscopy (SEM). Moreover, incorporating TiO2 filler gave a higher storage modulus, a shift in glass transition temperature (Tg) to a higher temperature, and reduced damping in dynamic mechanical thermal analysis (DMTA). The addition of TiO2 to NBR rubber increased the dielectric constant of the resultant composites in the tested frequency range from 102 to 105 Hz. As a result, TiO2-filled NBR composite has a high potential for dielectric elastomer actuator applications.

Funder

government budget of Prince of Songkla University and Natural Rubber Innovation Research Institute

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3