Biobased Castor Oil-Based Polyurethane Foams Grafted with Octadecylsilane-Modified Diatomite for Use as Eco-Friendly and Low-Cost Sorbents for Crude Oil Clean-Up Applications

Author:

Perera Helanka J.,Goyal Anjali,Alhassan Saeed M.,Banu Hussain

Abstract

Herein we report the synthesis and characterization of novel castor oil-based polyurethane (PU) foam functionalized with octadecyltrichlorosilane (C18)-modified diatomaceous earth (DE) particles, exhibiting superior hydrophobicity and oil adsorption, and poor water absorption, for use in effective clean-up of crude oil spillage in water bodies. High-performance and low-cost sorbents have a tremendous attraction in oil spill clean-up applications. Recent studies have focused on the use of castor oil as a significant polyol that can be used as a biodegradable and eco-friendly raw material for the synthesis of PU. However, biobased in-house synthesis of foam modified with C18-DE particles has not yet been reported. This study involves the synthesis of PU using castor oil, further modification of castor oil-based PU using C18 silane, characterization studies and elucidation of oil adsorption capacity. The FTIR analysis confirmed the fusion of C18 silane particles inside the PU skeleton by adding the new functional group, and the XRD study signified the inclusion of crystalline peaks in amorphous pristine PU foam owing to the silane cross-link structure. Thermogravimetric analysis indicated improvement in thermal stability and high residual content after chemical modification with alkyl chain moieties. The SEM and EDX analyses showed the surface’s roughness and the incorporation of inorganic and organic elements into pristine PU foam. The contact angle analysis showed increased hydrophobicity of the modified PU foams treated with C18-DE particles. The oil absorption studies showed that the C18-DE-modified PU foam, in comparison with the unmodified one, exhibited a 2.91-fold increase in the oil adsorption capacity and a 3.44-fold decrease in the water absorbing nature. From these studies, it is understood that this novel foam can be considered as a potential candidate for cleaning up oil spillage on water bodies.

Funder

ADEK

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference78 articles.

1. U.S. Energy Information Administration (2021, January 27). What Countries Are the Top Producers and Consumers of Oil?, Available online: https://www.eia.gov/energyexplained/oil-and-petroleum-products/where-our-oil-comes-from.php.

2. (2022, September 29). The Biggest Oil Producers in the Middle East. Available online: https://www.investopedia.com/articles/investing/101515/biggest-oil-producers-middle-east.asp.

3. (2020, July 12). Action Needed to Prevent Oil Spills off UAE Coast, Says Government Official. Available online: https://www.thenationalnews.com/uae/action-needed-to-prevent-oil-spills-off-uae-coast-says-government-official-1.1047200.

4. Short and long term toxicity of crude oil and oil dispersants to two representative coral species;Shafir;Environ. Sci. Technol.,2007

5. Assessment of the phototoxicity of weathered Alaska North Slope crude oil to juvenile pink salmon;Barron;Chemosphere,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3