Waste Eggshells as a Natural Filler for the Poly(Vinyl Chloride) Composites

Author:

Skórczewska KatarzynaORCID,Lewandowski KrzysztofORCID,Szewczykowski PiotrORCID,Wilczewski SławomirORCID,Szulc JoannaORCID,Stopa Paulina,Nowakowska Paulina

Abstract

The paper presents the characteristics of unplasticized PVC composites modified with biofiller obtained from the waste eggshells of hen eggs. The composites obtained by extrusion contained from 10 phr to 40 phr of biofiller. The filler was characterized using the SEM, TG, and sieve analysis methods. The influence of the filler on the processing properties was determined using plastographometric and MFR tests. Fundamental analysis of mechanical properties was also performed, i.e., Charpy impact strength and determination of tensile properties. The mechanical properties were supported with dynamical mechanical thermal analysis, time of thermal stability, and thermogravimetric analysis. Structure analysis was also performed using SEM and X-ray microcomputed tomography (micro-CT). The processing properties of the tested composites do not give grounds for disqualifying such material from traditional processing PVC mixtures. Notably, the biofiller significantly improves thermal stability. Ground eggshells (ES) work as scavengers for the Cl radicals released in the first stage, which delays the PVC chain’s decay. Additionally, a significant increase in the value of the modulus of elasticity and softening point (VST) of the composites concerning PVC was found. Ground hen eggshells can be used as an effective filler for PVC composites.

Funder

Ministry of Education and Science in Poland

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference71 articles.

1. Review: Production factors affecting the quality of chicken table eggs and egg products in Europe

2. https://agridata.ec.europa.eu/extensions/DataPortal/eggs-and-poultry.html

3. https://agriculture.ec.europa.eu/farming/animal-products/eggs_en

4. Animal Production Expressed in Physical Terms in 2021,2022

5. Egg and Egg Products;Stadelman,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3