Author:
Shi Min,Wang Lijun,Sun Jing,Yang Wensheng,Zhang Hui
Abstract
In Situ microfibrillation is an easy and economical processing method, which has drawn wide concern in recent years. In Situ special-shaped microfibrillar composites, which with poly(lactic acid)/polyamide 6 (PA6/PLA) together formed special-shaped microfibrils in polyolefin elastomer (POE) matrix, were successfully prepared by using multistage stretching extrusion technology. Four types of PA6 with different viscosity were utilized to investigate the effect of viscosity ratio of PA6 to PLA on the structure evolution of special-shaped microfibrils and the mechanical properties of POE/(PA6/PLA) composites. The morphological observation showed that the viscosity ratio was closely associated to the size and shape of PA6 and greatly affected the microfibrillar morphology of PLA/PA6. When the viscosity ratio of PA6 to PLA was less than 2.2, the “gourd-skewers-like” structure microfibrils were obtained. When the viscosity ratio of PA6/PLA to 14.2 was further increased, the “trepang” structure microfibrils were dominant. The “gourd skewers” structure microfibrils were favorable to improvement the tensile strength, Young’s modulus, and viscoelastic properties of POE/(PA6/PLA) blends compared to the “trepang” structure microfibrils. In addition, the morphology of microfibrils exhibited a negligible effect on the melting and crystallization temperature and crystallization degree of PLA and POE matrix. This work provides a new strategy for designing the in situ special-shaped microfibrillar composites with improved mechanical properties.
Funder
Multi-level talent program of Guizhou Province
Science and Technology Project of Guizhou Province
Science and Technology Project of Baiyun District
APC
Subject
Polymers and Plastics,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献