Morphology and Properties of Polyolefin Elastomer/Polyamide 6/Poly(lactic Acid) In Situ Special-Shaped Microfibrillar Composites: Influence of Viscosity Ratio

Author:

Shi Min,Wang Lijun,Sun Jing,Yang Wensheng,Zhang Hui

Abstract

In Situ microfibrillation is an easy and economical processing method, which has drawn wide concern in recent years. In Situ special-shaped microfibrillar composites, which with poly(lactic acid)/polyamide 6 (PA6/PLA) together formed special-shaped microfibrils in polyolefin elastomer (POE) matrix, were successfully prepared by using multistage stretching extrusion technology. Four types of PA6 with different viscosity were utilized to investigate the effect of viscosity ratio of PA6 to PLA on the structure evolution of special-shaped microfibrils and the mechanical properties of POE/(PA6/PLA) composites. The morphological observation showed that the viscosity ratio was closely associated to the size and shape of PA6 and greatly affected the microfibrillar morphology of PLA/PA6. When the viscosity ratio of PA6 to PLA was less than 2.2, the “gourd-skewers-like” structure microfibrils were obtained. When the viscosity ratio of PA6/PLA to 14.2 was further increased, the “trepang” structure microfibrils were dominant. The “gourd skewers” structure microfibrils were favorable to improvement the tensile strength, Young’s modulus, and viscoelastic properties of POE/(PA6/PLA) blends compared to the “trepang” structure microfibrils. In addition, the morphology of microfibrils exhibited a negligible effect on the melting and crystallization temperature and crystallization degree of PLA and POE matrix. This work provides a new strategy for designing the in situ special-shaped microfibrillar composites with improved mechanical properties.

Funder

Multi-level talent program of Guizhou Province

Science and Technology Project of Guizhou Province

Science and Technology Project of Baiyun District

APC

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3