Evaluation of Mechanical Properties of Porous Chitosan/Gelatin/Polycaprolactone Bone Scaffold Prepared by Microwave Foaming Method

Author:

Wulin Shihan1,Shiu Bing-Chiuan1,Yuan Qian-Yu2,Zhangjian He-qin3,Lin Jia-Horng12345ORCID,Lou Ching-Wen2467ORCID

Affiliation:

1. College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China

2. Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China

3. Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407802, Taiwan

4. Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China

5. Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan

6. Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan

7. Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, China

Abstract

Bone tissue may suffer from bone injury and bone defects due to accidents or diseases. Since the demand for autologous bone and allograft tissue far exceeds the supply, bone scaffolds have taken the lead. The use of bone scaffolds is one of the measures to help heal or regenerate bone tissue. Therefore, a new bone scaffold was proposed in this study, which has a simpler preparation process and stronger performance. This study proposes bone scaffolds with an attempt to use polymers that are synthesized separately with three types of minerals as the filler using the microwave foaming method as follows. A 0.1 wt% of montmorillonite (MMT), zinc oxide (ZnO), or titanium dioxide (TiO2) is added to chitosan (CS)/gelatin mixtures, respectively, after which sodium bicarbonate is added as a foaming agent, thereby forming porous gels. The polymer synthesized from three minerals was used as filler. The following microwave foaming method was adopted: 0.1 wt% MMT, ZnO, or TiO2 was added to the CS/gelatin mixture, and then sodium bicarbonate was added as a foaming agent to form a porous gel. Next, porous gels and polycaprolactone were combined in a self-made mold in order to form bone scaffolds. A stereo microscope is used to observe the morphology of bone scaffolds, after which the pore size analysis, pore connectivity, swell property, porosity, and compressive strength are tested, examining the effects of the mineral type on bone scaffolds. The test results indicate that with MMT being the filler and sodium bicarbonate being the foaming agent, the resulting bone scaffolds yield a porous structure with a pore size between 120 μm and 370 μm. Besides, the incorporation of polycaprolactone also provides samples of 1MCG-P, 2MCG-P, and 5MCG-P with a certain compressive strength of 150–170 MPa. To sum up, the test results substantiate that a combination of the microwave foaming method and MMT generates a porous structure for bone scaffolds (1MCG-P, 2MCG-P, and 5MCG-P), involving a porosity of 38%, an inter-connected porous structure, and the compressive strength that exceeds 150 MPa.

Funder

Minjiang University President’s Fund

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3