Author:
Li Meng,Zhang Zhanping,Qi Yuhong
Abstract
Waterborne silicone coatings are prepared in this paper by using silicone emulsion as a film-forming material, γ-methacryloxypropyltrimethoxysilane, and dibutyltin dilaurate as a curing agent and a catalyst, respectively. The corresponding coatings are obtained by controlling different microwave times to accelerate the coating curing. The surface morphology, roughness, surface properties, mechanical properties, and antifouling properties of the coating are studied by laser confocal microscope, contact angle measurement, tensile test, marine bacterial attachment test, and benthic diatom adhesion test. Additionally, the action mechanism of microwaves in the curing process of the coatings is also discussed. The results show that the microwave can greatly reduce the curing time of waterborne silicone coating. It can improve the painting efficiency, the surface roughness of the coating, and the mechanical properties of the coatings. The change in roughness increases the contact angle of the coating, reduces the apparent surface energy, and then improves the antifouling performance. For the coating cured by microwave, with the increase in microwave curing time, the water and diiodomethane contact angles of the coating gradually increase, and the surface energy gradually decreases from about 20 mJ/m2 to 10.8 mJ/m2. With the increase in microwave time, the attachment amount of Navicular Tenera gradually decreases, the removal rate gradually increases, and the removal rate of Navicular Tenera in the coating increases from 15.36% to 31.78%. The bacterial removal rate of the coating can be increases from 11.05% to 22.28% after microwave curing. Microwave-assisted curing is helpful in improving the antifouling and self-cleaning performance of waterborne silicone coatings, showing promising potential applications.
Funder
National Natural Science Foundation of China
Subject
Polymers and Plastics,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献