Abstract
Heavy metal pollution in soils is an issue of global concern, and many scholars have focused on Cadmium (Cd) because of its strong biological migration and toxicity. This study explored arable land soil, changes in external Cd contamination processes and its response to soil moisture conditions, and indoor simulation. After adding an external source of 5 mg/kg d.w., the distribution of soil Cd fractions content, EXC-Cd, CAB-Cd, FMO-Cd, OM-Cd, and RES-Cd, were continuously monitored under different water management regimes, and correlation analysis and regression equations were calculated. The results show that after external Cd entered arable land soils, the binging strength of pollutants and soil gradually increased with incubation time, and the distribution of Cd chemical forms was more stable under different water management regimes. The oversaturated water content promotes the transformation of EXC-Cd to other forms. The transformation of CAB-Cd fractions can be accelerated to other fractions by field capacity, and the active conversion period was 30–60 d. Not all Cd fractions correlated between each other, under the four water management regimes, but it seems that the reducibility of the soil environment was more conducive to external Cd fixation and stability. The response surface design method (RSM) was used to establish quantitative regimes between Cd fractions with incubation time and soil moisture, and the soil moisture content and incubation time had an obvious effect on FMO-Cd content, with R2 = 0.9542.
Funder
Technology Innovation Center for Land Engineering and Human Settlements,Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献