The Strategies for Improving Energy Efficiency of Power System with Increasing Share of Wind Power in China

Author:

Zhao Jun,Shen Bo

Abstract

Coal-fired power generation will dominate the electricity supply in China in the foreseeable future. Coal fired power units can play a crucial role in integrating intermittent wind energy and improving the overall energy efficiency of the power system. The integration benefits of wind power, along with the gains of high load rates of coal fired units, should be fully taken into account. An optimal model combining wind power and coal fired units is built to analyze the operational flexibility of coal fired units and the integration of wind power. Taking the coal fired units in North China Power Grid as an example, the dispatch costs and benefits are examined under the energy efficiency dispatch mode, in comparison with those under the fair dispatch rules and the installed capacity. The results show that increasing the flexibility of the power system under the energy efficiency dispatch mode may be the best choice for the power system with the high share of coal fired units to integrate more wind power, and that the units delivering flexibility services are financially influenced. The results also indicate that a certain amount of wind power curtailment may be reasonable, and that rational penalty rate and fees for the curtailment of wind power may help to optimize the operation of the power system and integrate more wind power. Based on these results, policy and strategy recommendations are proposed to promote the flexibility of coal fired units and change their operation mode and their dispatch mode in the power system.

Funder

Energy Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference47 articles.

1. Momentum is increasing towards a flexible electricity system based on renewables

2. The German energy transition in the British, Finnish and Hungarian news media

3. Modelling the potential for wind energy integration on China’s coal-heavy electricity grid

4. Energy Transition Trends 2019https://www.dena.de/fileadmin/dena/Dokumente/Themen_und_Projekte/Internationales/China/CREO/Energy_transition_trends_2019_engl.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3