Person Re-Identification with RGB-D Camera in Top-View Configuration through Multiple Nearest Neighbor Classifiers and Neighborhood Component Features Selection

Author:

Paolanti Marina,Romeo Luca,Liciotti Daniele,Cenci Annalisa,Frontoni EmanueleORCID,Zingaretti Primo

Abstract

Person re-identification is an important topic in retail, scene monitoring, human-computer interaction, people counting, ambient assisted living and many other application fields. A dataset for person re-identification TVPR (Top View Person Re-Identification) based on a number of significant features derived from both depth and color images has been previously built. This dataset uses an RGB-D camera in a top-view configuration to extract anthropometric features for the recognition of people in view of the camera, reducing the problem of occlusions while being privacy preserving. In this paper, we introduce a machine learning method for person re-identification using the TVPR dataset. In particular, we propose the combination of multiple k-nearest neighbor classifiers based on different distance functions and feature subsets derived from depth and color images. Moreover, the neighborhood component feature selection is used to learn the depth features’ weighting vector by minimizing the leave-one-out regularized training error. The classification process is performed by selecting the first passage under the camera for training and using the others as the testing set. Experimental results show that the proposed methodology outperforms standard supervised classifiers widely used for the re-identification task. This improvement encourages the application of this approach in the retail context in order to improve retail analytics, customer service and shopping space management.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3