A Method for Point Cloud Accuracy Analysis Based on Intensity Information

Author:

Li Siyuan1ORCID,Zheng Dehua1,Yue Dongjie1,Hu Chuang1,Ma Xinjiang1

Affiliation:

1. School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China

Abstract

Three-dimensional laser scanning has emerged as a prevalent measurement method in numerous high-precision applications, and the precision of the obtained data is closely related to the intensity information. Comprehending the association between intensity and point cloud accuracy facilitates scanner performance assessment, optimization of data acquisition strategies, and evaluation of point cloud precision, thereby ensuring data reliability for high-precision applications. In this study, we investigated the correlation between point cloud accuracy and two distinct types of intensity information. In addition, we presented methods for assessing point cloud accuracy using these two forms of intensity information, along with their applicable scopes. By examining the percentage intensity, we analyzed the reflectance properties of the scanned object’s surface employing the Lambertian model. Our findings indicate that the Lambertian circle fitting radius is inversely correlated with the scanner’s ranging error at a constant scanning distance. Experimental outcomes substantiate that modifying the surface characteristics of the object enables the attainment of higher-precision point cloud data. By constructing a model associating the raw reflectance intensity with ranging errors, we developed a single-point error ellipsoid model to assess the accuracy of individual points within the point cloud. The experiments revealed that the ranging error model based on the raw intensity is solely applicable to point cloud data unaffected by specular reflectance properties. Moreover, the devised single-point error ellipsoid model accurately evaluates the measurement error of individual points. Both analytical methods can be utilized to evaluate the performance of the scanner as well as the accuracy of the acquired point cloud data, providing reliable data support for various high-precision applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3