Molecular Evaluation of the mRNA Expression of the ERG11, ERG3, CgCDR1, and CgSNQ2 Genes Linked to Fluconazole Resistance in Candida glabrata in a Colombian Population

Author:

Cárdenas Parra Leidy Yurany12,Rojas Rodríguez Ana Elisa2ORCID,Pérez Cárdenas Jorge Enrique1,Pérez-Agudelo Juan Manuel1

Affiliation:

1. Facultad de Ciencias para la Salud, Universidad de Caldas, Manizales 170004, Colombia

2. Facultad de Ciencias de la Salud, Universidad Católica de Manizales, Manizales 170001, Colombia

Abstract

Introduction: The study of Candida glabrata genes associated with fluconazole resistance, from a molecular perspective, increases the understanding of the phenomenon with a view to its clinical applicability. Objective: We sought to establish the predictive molecular profile of fluconazole resistance in Candida glabrata by analyzing the ERG11, ERG3, CgCDR1, and CgSNQ2 genes. Method: Expression was quantified using RT-qPCR. Metrics were obtained through molecular docking and Fisher discriminant functions. Additionally, a predictive classification was made against the susceptibility of C. glabrata to fluconazole. Results: The relative expression of the ERG3, CgCDR1, and CgSNQ2 genes was higher in the fluconazole-resistant strains than in the fluconazole-susceptible, dose-dependent strains. The gene with the highest relative expression in the fluconazole-exposed strains was CgCDR1, and in both the resistant and susceptible, dose-dependent strains exposed to fluconazole, this was also the case. The molecular docking model generated a median number of contacts between fluconazole and ERG11 that was lower than the median number of contacts between fluconazole and ERG3, -CgCDR1, and -CgSNQ2. The predicted classification through the multivariate model for fluconazole susceptibility achieved an accuracy of 73.5%. Conclusion: The resistant strains had significant expression levels of genes encoding efflux pumps and the ERG3 gene. Molecular analysis makes the identification of a low affinity between fluconazole and its pharmacological target possible, which may explain the lower intrinsic susceptibility of the fungus to fluconazole.

Funder

Universidad Católica de Manizales

Universidad de Caldas

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3