Batch Fine Magnetic Pattern Transfer Method on Permanent Magnets Using Coercivity Change during Heating for Magnetic MEMS

Author:

Nagai Keita1ORCID,Sugita Naohiro2ORCID,Shinshi Tadahiko2

Affiliation:

1. Department of Mechanical Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan

2. Laboratory for Future Interdisciplinary Research of Science and Technology (FIRST), Institute of Innovative Research (IIR), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan

Abstract

In magnetic microelectromechanical systems (MEMSs), permanent magnets in the form of a thick film or thin plate are used for structural and manufacturing purposes. However, the geometric shape induces a strong self-demagnetization field during thickness–direction magnetization, limiting the surface magnetic flux density and output power. The magnets must be segmented or magnetized in a fine and multi-pole manner to weaken the self-demagnetization field. Few studies have been performed on fine multi-pole magnetization techniques that can generate a higher surface magnetic flux density than segmented magnets and are suitable for mass production. This paper proposes a batch fine multi-pole magnetic pattern transfer (MPT) method for the magnets of MEMS devices. The proposed method uses two master magnets with identical magnetic patterns to sandwich a target magnet. Subsequently, the coercivity of the target magnet is reduced via heating, and the master magnet’s magnetic pattern is transferred to the target magnet. Stripe, checkerboard, and concentric circle patterns with a pole pitch of 0.3 mm are magnetized on the NdFeB master magnets N38EH with high intrinsic coercivity via laser-assisted heating magnetization. The MPT yields the highest surface magnetic flux density at 160 °C, reaching 39.7–66.1% of the ideal magnetization pattern on the NdFeB target magnet N35.

Funder

JST SPRING

Kakenhi

Precise Measurement Technology Promotion Foundation

AMADA foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3