Passively Q-Switched Er-Doped Fiber Laser Based on Bentonite Clay (Al2H2O6Si) Saturable Absorber

Author:

Asghar Haroon1ORCID,Khalid Umer Sayyab1,Sohail Muhammad2,Alrebdi Tahani A.3ORCID,Umar Zeshan A.1,Alshehri A. M.4,Ahmed Rizwan1,Baig M. Aslam1ORCID

Affiliation:

1. National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 45320, Pakistan

2. International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China

3. Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

4. Department of Physics, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia

Abstract

This paper presents the investigations toward the direct use of bentonite clay (Al2H2O6Si) nanoparticles to act like a saturable absorber (SA) for the Q-switched pulse operation of an erbium-doped fiber laser (EDFL). The measured results reveal that with the incorporation of bentonite clay nanopowder as a SA, an EDFL is realized with a Q-switching mechanism starting at a pump power of 30.8 mW, and a Q-switched emission wavelength was noticed at 1562.94 nm at 142 mW pump power. With an increased pump from 30.8 mW to 278.96 mW, the temporal pulse parameters including minimum pulse duration and maximum pulse repetition rates were reported as 2.6 µs and 103.6 kHz, respectively. The highest peak power, signal-to-noise ratio, output power and pulse energy were noticed to be 16.56 mW, 51 dB, 4.6 mW, and 47 nJ, respectively, at a highest pump power of 278.96 mW. This study highlights the significance of bentonite clay (Al2H2O6Si) nanoparticles as a potential candidate for a saturable absorber for achieving nonlinear photonics applications.

Funder

Princess Nourah Bint Abdulrahman University Researchers Supporting Project

Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia, and The Deanship of Scientific Research at King Khalid University for funding this work through the Research Group Program

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3