Determination of the Porosity Distribution during an Erosion Test Using a Coaxial Line Cell

Author:

Bittner Tilman,Bajodek Mathieu,Bore ThierryORCID,Vourc’h Eric,Scheuermann Alexander

Abstract

The detection of porosity changes within a soil matrix caused by internal erosion is beneficial for a better understanding of the mechanisms that induce and maintain the erosion process. In this paper, an electromagnetic approach using Spatial Time Domain Reflectometry (STDR) and a transmission line model is proposed for this purpose. An original experimental setup consisting of a coaxial cell which acts as an electromagnetic waveguide was developed. It is connected to a transmitter/receiver device both measuring the transmitted and corresponding reflected electromagnetic pulses at the cell entrance. A gradient optimization method based on a computational model for simulating the wave propagation in a transmission line is applied in order to reconstruct the spatial distribution of the soil dielectric permittivity along the cell based on the measured signals and an inversion algorithm. The spatial distribution of the soil porosity is deduced from the dielectric permittivity profile by physically based mixing rules. Experiments were carried out with glass bead mixtures of known dielectric permittivity profiles and subsequently known spatial porosity distributions to validate and to optimize both, the proposed computational model and the inversion algorithm. Erosion experiments were carried out and porosity profiles determined with satisfying spatial resolution were obtained. The RMSE between measured and physically determined porosities varied among less than 3% to 6%. The measurement rate is sufficient to be able to capture the transient process of erosion in the experiments presented here.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3