A Lightweight and Low-Power UAV-Borne Ground Penetrating Radar Design for Landmine Detection

Author:

Šipoš DanijelORCID,Gleich Dušan

Abstract

This paper presents the development of a lightweight and low-power Ground Penetrating Radar (GPR) to detect buried landmines in harsh terrain, using an Unmanned Aerial Vehicle (UAV). Despite the fact that GPR airborne systems have been already used for a while, there has yet been no focus on the UAV autonomy, which depends on the payload itself. Therefore, the contribution of this work is the introduction of a lightweight and low-power consumption GPR system, which is based on the Stepped Frequency Continuous Wave (SFCW) radar principle. The Radio Frequency (RF) transceiver represents an improved implementation of the super-heterodyne architecture, which currently offers higher sensitivity. This is achieved by combining analog and digital processing techniques. The experimental results showed that the developed system can detect both metallic and plastic buried targets. Target detection with a scanning height up to about 0.5 m shows good applicability in an unstructured, harsh environment, which is typical of mined terrain. The proposed system still needs some improvements for a fully operational system regarding different aspects of scanning speeds and soil properties such as moisture content.

Funder

North Atlantic Treaty Organization

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference29 articles.

1. International Campaign to Ban Landmines, Landmine Monitor 2019http://www.the-monitor.org

2. Electromagnetic induction spectroscopy for clearing landmines

3. Ground Penetrating Radar Theory and Applications;Jol,2009

4. Jane’s: Mines and Mine Clearance 2011–2012;King,2011

5. Handheld GPR and MD sensor for landmine detection

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3